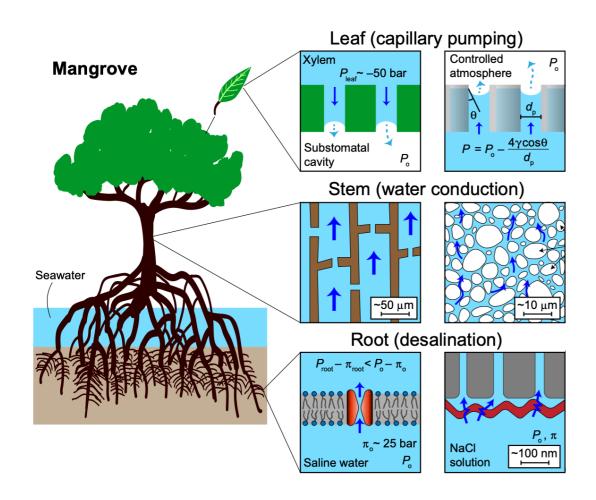
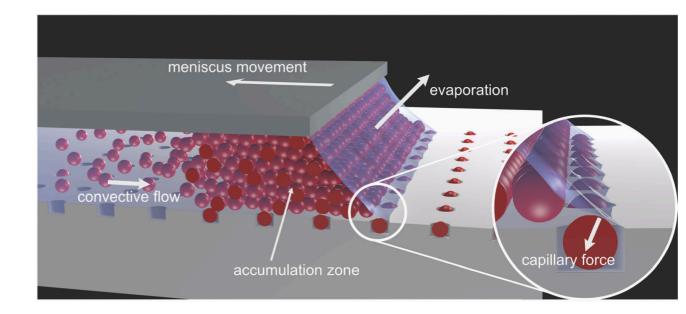
ChE-402: Diffusion and Mass Transfer


Lecture 4

Intended Learning Outcome

- To solve steady-state problems involving both convection and diffusion.
- To further analyze the link between velocity, diffusion, and convection.

Capillary evaporation



SCIENCE ADVANCES | RESEARCH ARTICLE

ENGINEERING

Capillary-driven desalination in a synthetic mangrove

Yunkun Wang^{1,2}, Jongho Lee^{2,3}, Jay R. Werber^{2,4}, Menachem Elimelech²*

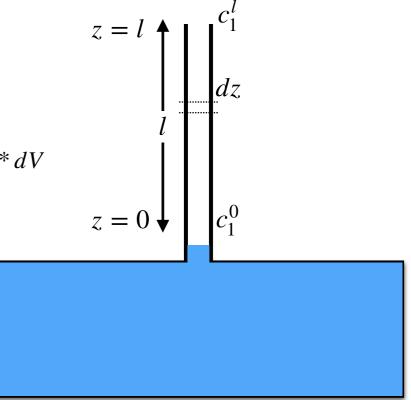
Soft Matter

Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects

Songbo Ni, oab Lucio Isa at *and Heiko Wolf *a

Solving the evaporation problem in stagnant air

Calculate flux and concentration profile of evaporating benzene in stagnant air.


By stagnant air, we are approximating the velocity of air to be zero (total flux of air $n_2 = c_2 v_2 = 0$).

Define your system - capillary tube

Define an element to do mass balance

Apply mass balance

 $Accumulation*dV = F\overset{o}{lux}\mid_{in}*A - F\overset{o}{lux}\mid_{out}*A + Generation*dV - Consumption*dV$

Solving the evaporation problem in stagnant air

Using average velocity of volumes for convective flux

$$n_1 = j_1^a + c_1 v^a$$
 where $v^a = v^v$

$$n_1 = -D\frac{dc_1}{dz} + c_1 v^{\nu}$$

$$n_1 = -D\frac{dc_1}{dz} + c_1(\bar{V}_1 n_1)$$

$$v^{\nu} = c_1 \bar{V}_1 v_1 + c_2 \bar{V}_2 v_2$$

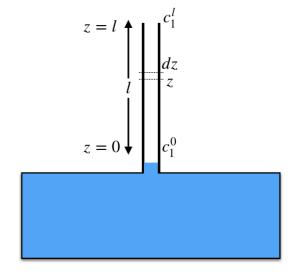
Air is stagnant

$$\Rightarrow v_2 = 0$$

$$\Rightarrow$$
 $v^{\nu} = c_1 \overline{V}_1 v_1 = \overline{V}_1 n_1$ (constant)

$$D\frac{dc_1}{dz} - c_1(\bar{V}_1 n_1) + n_1 = 0$$

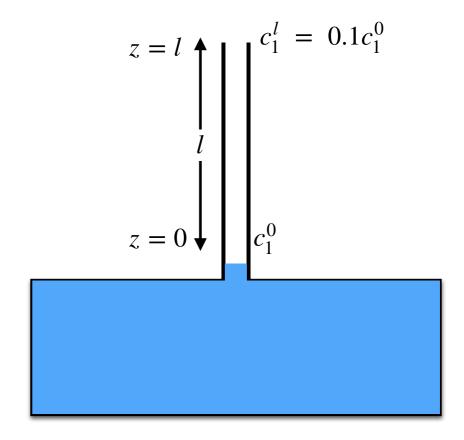
n₁ is constant

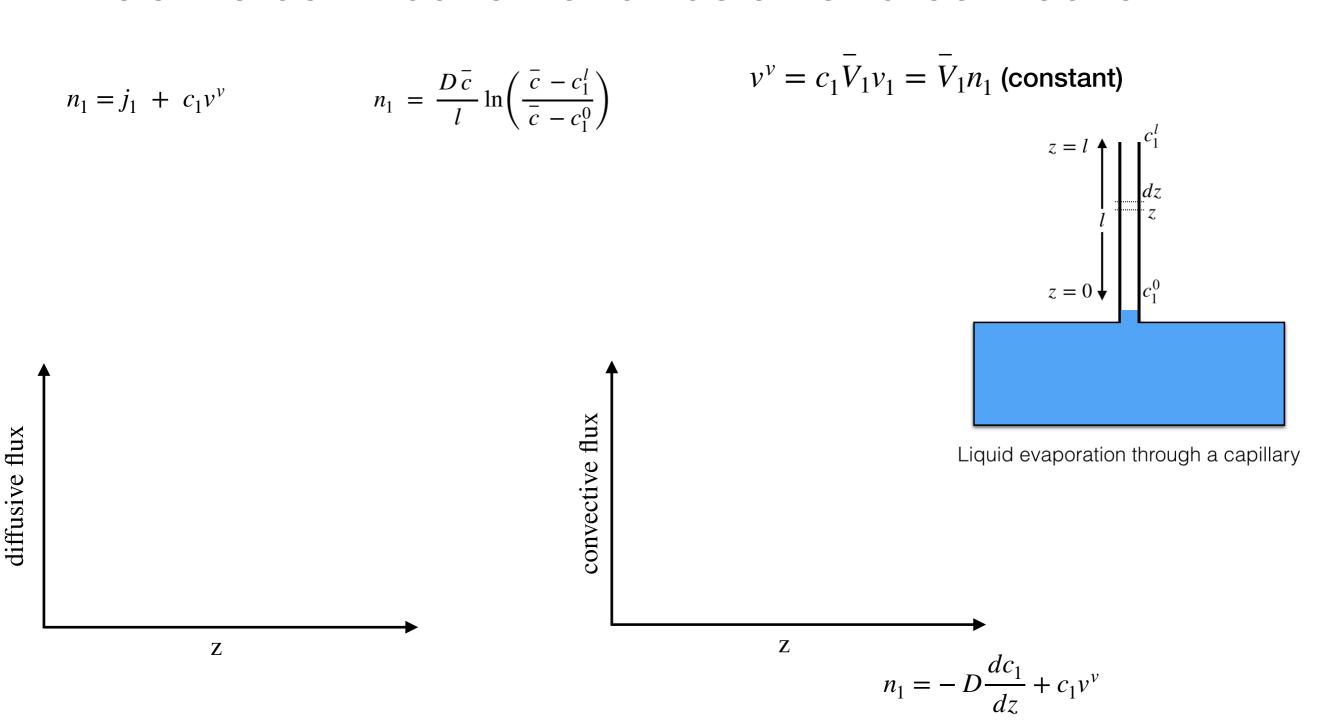

$$\frac{dc_1}{dz} - \frac{\bar{V}_1 n_1}{D} c_1 + \frac{n_1}{D} = 0$$

$$\overline{V}_1 = \overline{V}_2 = \frac{1}{\overline{c}}$$
 is constant (22.4 liter/mole) in vapor phase at 1 bar.

Boundary conditions (two boundary conditions for ODE because n₁ is also unknown)

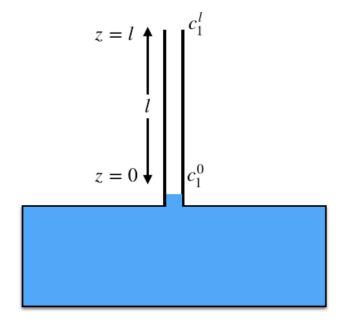
$$\frac{\overline{c} - c_1}{\overline{c} - c_1^0} = \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0}\right)^{\frac{Z}{l}}$$


$$n_1 = \frac{D\overline{c}}{l} \ln \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0} \right)$$


Where is the velocity maximum in this case

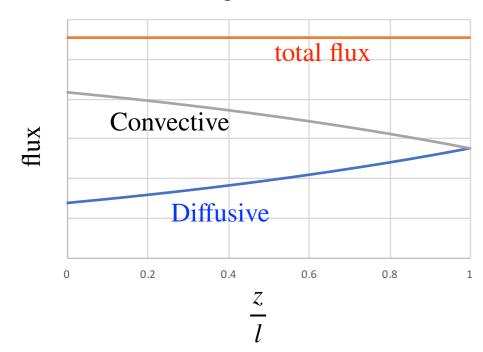
- A. Top (z = L)
- B. Bottom (z = 0)
- C. Not enough information
- D. Velocity is constant

Liquid evaporation through a capillary



Convection is higher at higher concentration

 $v^{v} = c_{1} \overline{V}_{1} v_{1} = \overline{V}_{1} n_{1}$ (constant)



Low concentration total flux Diffusive $0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1$ $\frac{Z}{2}$

Liquid evaporation through a capillary

High concentration

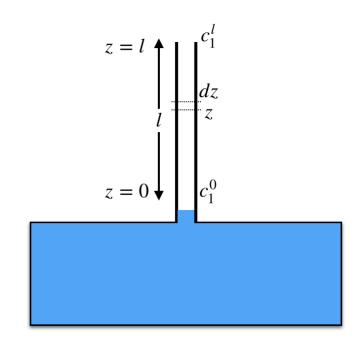
$$n_1 = j_1 + c_1 v^{\nu}$$

$$n_1 = \frac{D\overline{c}}{l} \ln \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0} \right)$$

$$\frac{\overline{c} - c_1}{\overline{c} - c_1^0} = \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0}\right)^{\frac{2}{l}}$$

Diffusive part

$$j_1 = -D\frac{dc_1}{dz}$$


Derivative of concentration profile (LHS)

$$\frac{d}{dz} \left(\frac{\overline{c} - c_1}{\overline{c} - c_1^0} \right) = -\left(\frac{1}{\overline{c} - c_1^0} \right) \frac{dc_1}{dz}$$

Derivative of RHS

$$\frac{da^z}{dz} = a^z \ln a$$

$$\frac{d}{dz} \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0} \right)^{\frac{z}{l}} = \frac{1}{l} \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0} \right)^{\frac{z}{l}} \ln \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0} \right)$$

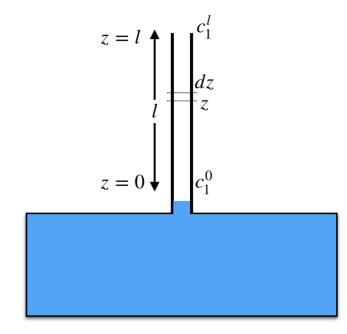
$$j_1 = -D\frac{dc_1}{dz} = \frac{D(\bar{c} - c_1^0)}{l} \left(\frac{\bar{c} - c_1^l}{\bar{c} - c_1^0}\right)^{\frac{Z}{l}} \ln\left(\frac{\bar{c} - c_1^l}{\bar{c} - c_1^0}\right)$$

Alternatively

Convective flux

$$c_1 v^{\nu} = c_1 \overline{V}_1 n_1 = \frac{c_1}{\overline{c}} n_1 \approx y_1 n_1$$

Diffusive flux = Total flux - Convective flux


$$j_1 = n_1 - c_1 v^v = n_1 - \frac{c_1}{\overline{c}} n_1 = n_1 \left(\frac{\overline{c} - c_1}{\overline{c}} \right)$$

$$n_1 = \frac{D\bar{c}}{l} \ln \left(\frac{\bar{c} - c_1^l}{\bar{c} - c_1^0} \right)$$

$$\Rightarrow j_1 = \frac{D\overline{c}}{l} \ln \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0} \right) \left(\frac{\overline{c} - c_1}{\overline{c}} \right) \qquad \qquad \overline{c} - c_1^l = \left(\overline{c} - c_1^l \right) \frac{\overline{z}}{l} \qquad \qquad (\overline{c} - c_1) = (\overline{c} - c_1^0) \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0} \right) \overline{l}$$

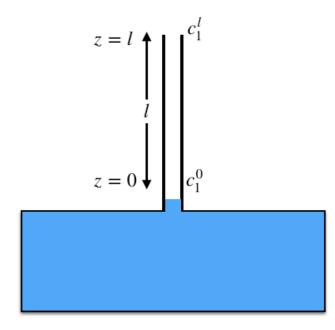
$$\frac{\overline{c} - c_1}{\overline{c} - c_1^0} = \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0}\right)^{\frac{\zeta}{l}} \longrightarrow$$

$$\frac{\overline{c} - c_1}{\overline{c} - c_1^0} = \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0}\right)^{\frac{2}{l}} \longrightarrow$$

Liquid evaporation through a capillary

$$(\bar{c} - c_1) = (\bar{c} - c_1^0) \left(\frac{\bar{c} - c_1^l}{\bar{c} - c_1^0}\right)^{\frac{z}{l}}$$

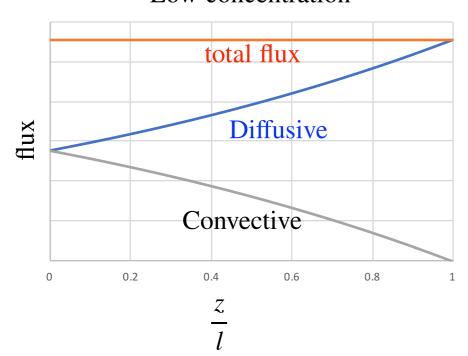
$$\Rightarrow j_1 = \frac{D(\bar{c} - c_1^0)}{l} \left(\frac{\bar{c} - c_1^l}{\bar{c} - c_1^0} \right)^{\frac{z}{l}} \ln \left(\frac{\bar{c} - c_1^l}{\bar{c} - c_1^0} \right)$$

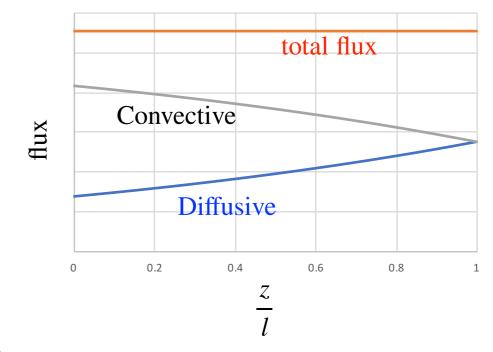

Total flux is constant

$$n_1 = \frac{D\overline{c}}{l} \ln \left(\frac{\overline{c} - c_1^l}{\overline{c} - c_1^0} \right)$$

$$j_1 = \frac{D(\bar{c} - c_1^0)}{l} \left(\frac{\bar{c} - c_1^l}{\bar{c} - c_1^0} \right)^{\frac{Z}{l}} \ln \left(\frac{\bar{c} - c_1^l}{\bar{c} - c_1^0} \right)$$

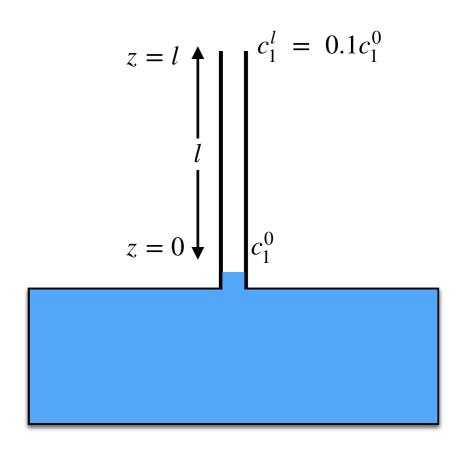
$$\left(\frac{\overline{c}-c_1^l}{\overline{c}-c_1^0}\right) > 1 \implies \text{Diffusive part is maximum at } z=l$$


Convective part = $n_1 - j_1 = \frac{c_1}{\overline{c}} n_1$ is maximum at z = 0


Liquid evaporation through a capillary

• Higher concentration c_1^0 leads to higher total flux

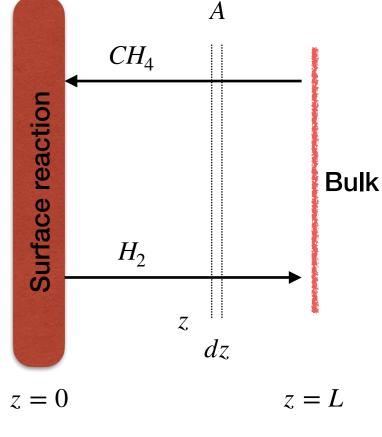
Low concentration


High concentration

In class problem:

Calculate velocity of component 1 at z = 0 and z = 1

$$c_1^0 = 0.02 \text{ mole/liter}$$
 $c_1^l = 0.1c_1^0$
 $D = 1 \text{ cm}^2 \text{ s}^{-1}$ $l = 10 \text{ cm}$


Consider the following problem with diffusion, convection and reaction at steady-state

$$CH_4 \rightarrow C + 2H_2$$

Calculate concentration profile of CH₄

Define your system -

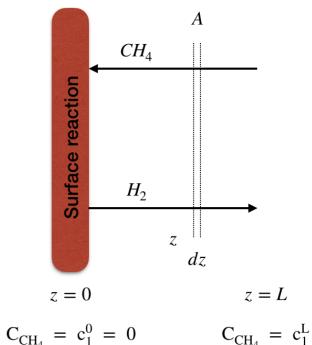
Define an element to do mass balance

$$C_{CH_4} = c_1^0 = 0$$

$$C_{CH_4} = c_1^L$$

Apply mass balance

 $Accumulation*dV = F\overset{o}{lux}\mid_{in}*A - F\overset{o}{lux}\mid_{out}*A + Generation*dV - Consumption*dV$


$$\frac{dn_1}{dz} = 0$$

n₁ is constant

Similarly

$$\frac{dn_2}{dz} = 0$$

n₂ is constant

Let's look at the boundary; z = 0

$$CH_4 \rightarrow C + 2H_2$$

$$n_2 = -2n_1$$

$$n = n_1 + n_2 = n_1 - 2n_1 = -n_1$$

We can use mole average velocity because we are dealing with gases

$$v = y_1 v_1 + y_2 v_2$$

$$v = y_1 v_1 + y_2 v_2 \qquad n_1 = -Dc \nabla y_1 + c_1 v$$

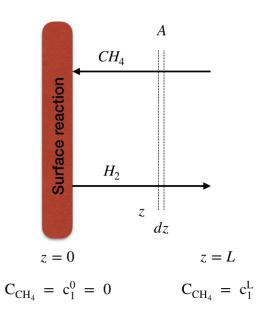
$$n = n_1 + n_2 = cv$$

$$\Rightarrow n_1 = -Dc \nabla y_1 + y_1 c v$$

$$\Rightarrow n_1 = -Dc \nabla y_1 + y_1 n$$

$$n_1(1+y_1) = -Dc\frac{dy}{dz}$$

$$\Rightarrow n_1 = -Dc \nabla y_1 - y_1 n_1$$


$$\int_{0}^{z} \frac{n_{1}}{Dc} dz = -\int_{0}^{y_{1}} \frac{dy}{(1+y_{1})}$$

$$at z = 0, C_{CH_4} = c_1^0 = 0$$

$$\int_0^z \frac{n_1}{Dc} dz = -\int_0^{y_1} \frac{dy}{(1+y_1)}$$

$$\Rightarrow \frac{n_1 z}{Dc} = -\ln(1 + y_1)$$

at
$$z = L$$
, $C_{CH_4} = c_1^L$

$$\Rightarrow \frac{n_1 L}{Dc} = -\ln(1 + y_1^L)$$

$$\Rightarrow n_1 = -\frac{Dc}{L} \ln(1 + y_1^L)$$

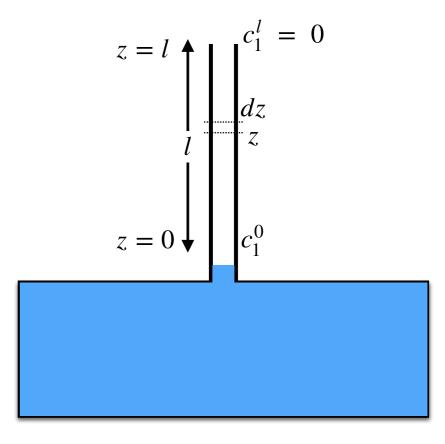
$$\Rightarrow \ln(1+y_1) = -\frac{n_1 z}{Dc} = \frac{z}{L} \ln(1+y_1^L) = \ln(1+y_1^L)^{z/L}$$

$$\Rightarrow 1 + y_1 = (1 + y_1^L)^{z/L}$$

$$\Rightarrow y_1 = (1 + y_1^L)^{z/L} - 1$$

Exercise problem #1

Compare total flux when you consider convection and when you neglect convection (use thin film result without convection)

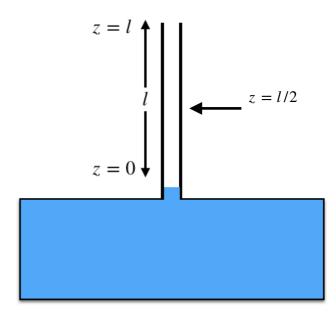

Consider two cases (stagnant air):

Benzene evaporating at 6 °C and 78 °C, Total pressure = 1 atm

$$c_1^l = 0$$
 D = 0.01 cm²/s; $l = 1$ m

$$\bar{c} = \frac{P}{RT} \qquad c_1^0 = \frac{P^{sat}}{RT}$$

T (°C)	P ^{sat} (atm)
6	0.049
78	0.934


T (°C)	Psat	$P\ln\left(\frac{P}{P-P^{sat}}\right)$	% Convection
6	0.049		
78	0.934		

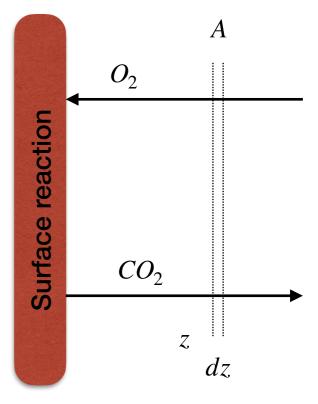
Exercise problem #2

We said the air was stagnant, can you calculate the diffusive and convective flux of air?

$$v_2 = 0$$
 $\Rightarrow n_2 = c_2 v_2 = 0$
$$n_2 = j_2 + c_2 v^v \qquad \Rightarrow j_2 = -c_2 v^v$$

Liquid evaporation through a capillary

Average velocity of volume = v^{v}



Exercise problem #3

$$C + O_2 \rightarrow CO_2$$

Calculate concentration profile of O₂

Calculate velocity of CO_2 at z = L

$$z = 0$$

$$z = L$$

$$c_1^0 = c_1^L/10$$

$$C_{O_2} = c_1^L$$

$$C_{CO_2} = c_2^L$$

$$C_{CO_2} = c_2^{L}$$

